应用近红外光谱技术对茯苓药材进行定性定量检测研究
[摘要]目的:利用傅里叶变换近红外漫反射光谱结合化学计量学方法对茯苓不同部位进行定性判别建模,并建立茯苓多糖的定量检测模型和茯苓多糖定量分析。方法:采用紫外分光光度法测定茯苓多糖含量,漫反射方式采集样品近红外光谱,采用一阶导数+矢量归一化法处理近红外光谱图,运用偏最小二乘法(PLS)建立光谱数据与多糖的定量校正模型,运用主成分分析(PCA)法建立茯苓定性模型,结果:偏最小二乘定量校正模型R为0.9440,RMSEC为0.0721,RMSEP为0.0762;定性分析模型对10个预测样品的判错数为0。结论:利用傅里叶变换近红外漫反射光谱快速判别不同部位茯苓的方法是可行的,多糖含量PLS定量分析模型从预测精度、稳定性及适应性考虑均具一定的通用性,具有良好的市场应用前景。
[关键词]近红外光谱;茯苓;多糖;定性与定量
Qualitative and quantitative detection of Poria cocos by
near infrared reflectance spectroscop
FU Xiao-huan1, 2 , HU Jun-hua <sup>1</sup> , LI Jia-chun <sup>1</sup> , DING Yin-hua <sup>1</sup>, WANG Zhen-zhong<sup>1</sup>, XIAO Wei 1*, ZHANG Zhen-qiu 2*
(1. Jiangsu Kanion Pharmaceutical CO., Ltd. Lianyungang 222001, China;
2. Liaoning University of Traditional Chinese Medicine, Dalian 116600, China)
[Abstract]Objective: The present study is concerning qualitative and quantitative detection of Poria cocos quality based on FT-near infrared (FT-NIR)spectroscopy combined with chemometrics. Method: The Poria cocos polysaccharides contents were determined by UV. Transmission mode was used in the collection of NIR spectral samples. The pretreatment method was first derivation and vector normalization. Then principal component analysis (PCA) was used to build classification model and partialleast square (PLS) to build the calibration model. Result: The results showed that conventional criteria such as the R, root mean square error of calibration (RMSEC), and the root mean square error of prediction (RMSEP) are 0.944 0, 0.072 1 and 0.076 2, respectively. the misclassifiedsample is 0 using the qualitative model built by PCA. Conclusion: The prediction models based on NIR have a better performance with high precision, good stability and adaptability and can be used to predict the polysaccharose content of Poria cocos rapidly, which can provide a fast approach to discriminate the different parts of Poria cocos.
[Key words]near infrared reflectance spectroscop; Poria cocos; polysaccharose; qualitative and quantitative
doi:10.4268/cjcmm20150222
茯苓为多孔菌科真菌Poriacocos(Schw.)Wolf的干燥菌核,我国人民用茯苓已有2000多年的历史,早在春秋末期的《诗经》中就有记载。茯苓入药,始载于《神农本草经》,并被列为上品。具有利水渗湿、健脾安神等功效。现代药理学研究表明,茯苓具有调节免疫功能、抗肿瘤、抗衰老、抗炎等药理作用。茯苓是传统的中药材和营养保健益寿食品,在中医临床及人民生活中有着广泛的使用价值,既可与诸多中药配伍组方,又可大剂量单用,还可制成茯苓饼、茯苓糕、茯苓饼干等多种保健食品,获得良好的社会效益和经济效益,茯苓的深度开发具有广阔的市场前景,因此急需建立独立、快速、绿色、科学的检测方法,为开发茯苓药材资源和打造茯苓道地药材的品牌提供科学依据[1-3]。
近红外光谱技术是近年来发展迅速的一种绿色分析技术,是把化学计量学算法与近红外光谱检测技术融合到一起,根据不同物质对近红外光的吸收特性对物质的结构和组成进行定性、定量分析的一门技术,其光波波长范围为780~2500nm。该技术以实时、快速、无损、环保和可进行多组分分析的特点,在药物的定性、定量分析中已经得到了广泛的重视和应用[4-7]。物质分子中C-H,N-H,O-H和C=O等基团基频振动的合频与倍频吸收都在近红外区,茯苓的主要化学成分为茯苓聚糖、三萜、树胶、蛋白质、甾醇和脂肪酸等,茯苓中茯苓糖(Pachymose)为主要成分,质量分数为84.2%[2]。茯苓糖的含量是茯苓的重要品质指标,近红外技术适用于含有这些基团的茯苓中总糖的测定。